Search results for "Elementary proof"
showing 8 items of 8 documents
A simple proof of the polylog counting ability of first-order logic
2007
The counting ability of weak formalisms (e.g., determining the number of 1's in a string of length N ) is of interest as a measure of their expressive power, and also resorts to complexity-theoretic motivations: the more we can count the closer we get to real computing power. The question was investigated in several papers in complexity theory and in weak arithmetic around 1985. In each case, the considered formalism (AC 0 -circuits, first-order logic, Δ 0 ) was shown to be able to count up to a polylogarithmic number. An essential part of the proofs is the construction of a 1-1 mapping from a small subset of {0, ..., N - 1} into a small initial segment. In each case the expressibility of …
The complex of words and Nakaoka stability
2005
We give a new simple proof of the exactness of the complex of injective words and use it to prove Nakaoka's homology stability for symmetric groups. The methods are generalized to show acyclicity in low degrees for the complex of words in "general position". Hm(§ni1;Z) = Hm(§n;Z) for n=2 > m where §n denotes the permutation group of n elements. An elementary proof of this fact has not been available in the literature. In the first section the complex C⁄(m) of abelian groups is studied which in de- gree n is freely generated by injective words of length n. The alphabet consists of m letters. The complex C⁄(m) has the only non vanishing homology in degree m (Theorem 1). This is a result of F.…
The Topology of the Milnor Fibration
2020
The fibration theorem for analytic maps near a critical point published by John Milnor in 1968 is a cornerstone in singularity theory. It has opened several research fields and given rise to a vast literature. We review in this work some of the foundational results about this subject, and give proofs of several basic “folklore theorems” which either are not in the literature, or are difficult to find. Examples of these are that if two holomorphic map-germs are isomorphic, then their Milnor fibrations are equivalent, or that the Milnor number of a complex isolated hypersurface or complete intersection singularity \((X, \underline {0})\) does not depend on the choice of functions that define …
An elementary proof of Hilbertʼs theorem on ternary quartics
2012
Abstract In 1888, Hilbert proved that every nonnegative quartic form f = f ( x , y , z ) with real coefficients is a sum of three squares of quadratic forms. His proof was ahead of its time and used advanced methods from topology and algebraic geometry. Up to now, no elementary proof is known. Here we present a completely new approach. Although our proof is not easy, it uses only elementary techniques. As a by-product, it gives information on the number of representations f = p 1 2 + p 2 2 + p 3 2 of f up to orthogonal equivalence. We show that this number is 8 for generically chosen f, and that it is 4 when f is chosen generically with a real zero. Although these facts were known, there wa…
A Pedagogical Proof of Arrow's Impossibility Theorem
1999
In this note I consider a simple proof of Arrow's Impossibility Theorem (Arrow 1963). I start with the case of three individuals who have preferences on three alternatives. In this special case there are 133=2197 possible combinations of the three individuals' rational preferences. However, by considering the subset of linear preferences, and employing the full strength of the IIA axiom, I reduce the number of cases necessary to completely describe the SWF to a small number, allowing an elementary proof suitable for most undergraduate students. This special case conveys the nature of Arrow's result. It is well known that the restriction to three options is not really limiting (any larger se…
Mappings of finite distortion: a new proof for discreteness and openness
2008
We give a new and elementary proof of the known result: a non-constant mapping of finite distortion f : Ω ⊂ ℝn → ℝn is discrete and open, provided that its distortion function if n = 2 and that for some p > n − 1 if n ≥ 3.
A new proof of the support theorem and the range characterization for the Radon transform
1983
The aim of this note is to give a new and elementary proof of the support theorem for the Radon transform, which is based only on the projection theorem and the Paley-Wiener theorem for the Fourier transform. The idea is to solve a certain system of linear equations in order to determine the coefficients of a homogeneous polynomial (interpolation problem). By the same method, we get a short proof of the range characterization for Radon transforms of functions supported in a ball.
An Elementary Proof of a Theorem of Graham on Finite Semigroups
2020
The purpose of this note is to give a very elementary proof of a theorem of Graham that provides a structural description of finite 0-simple semigroups and its idempotent-generated subsemigroups.